Convolution‐based filtering and forecasting: An application to WTI crude oil prices
Christian Gourieroux,
Joann Jasiak and
Michelle Tong
Journal of Forecasting, 2021, vol. 40, issue 7, 1230-1244
Abstract:
We introduce new methods of filtering and forecasting for the causal–noncausal convolution model. This model represents the dynamics of stationary processes with local explosions, such as spikes and bubbles, which characterize the time series of commodity prices, cryptocurrency exchange rates, and other financial and macroeconomic variables. The convolution model is a structural mixture of independent latent causal and noncausal component series. We propose an algorithm that recovers the latent components by evaluating the filtering density of one component, conditional on the observed past, present, and future values of the time series. Forecasts of the observed time series are obtained as a combination of filtered causal and noncausal component forecasts. The new filtering and forecasting methods are illustrated in a simulation study and compared with the results obtained from the mixed causal–noncausal autoregressive MAR model in application to WTI crude oil prices.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/for.2757
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:40:y:2021:i:7:p:1230-1244
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().