EconPapers    
Economics at your fingertips  
 

Time series forecasting methods for the Baltic dry index

Christos Katris and Manolis Kavussanos ()

Journal of Forecasting, 2021, vol. 40, issue 8, 1540-1565

Abstract: This paper forecasts the daily Baltic Dry Index (BDI) using time series and machine learning methods. Significant business cycles and freight rate volatility present in the ocean‐going shipping industry make the ability to forecast freight rates and cycles extremely important for business decisions. Data‐driven model selection based on data characteristics is performed through ARIMA, fractional ARIMA (FARIMA), and ARIMA and FARIMA models with GARCH and EGARCH errors. The corresponding machine learning techniques utilized are feed‐forward fully connected artificial neural networks (ANNs), support vector regression (SVR), and multivariate adaptive regression splines (MARS). Among others, FARIMA and MARS models are used for the first time in forecasting the BDI. Diebold–Mariano tests reveal that time series and machine learning approaches have comparable performance. However, combinations of forecasts of the selected models lead to better forecasting accuracy overall. Bai and Perron tests are utilized to check the robustness of the results over different cycles through the detection of breakpoints in the series.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://doi.org/10.1002/for.2780

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:40:y:2021:i:8:p:1540-1565

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:40:y:2021:i:8:p:1540-1565