Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series
Miguel de Carvalho and
Gabriel Martos
Journal of Forecasting, 2022, vol. 41, issue 1, 167-180
Abstract:
In this article we propose an extension of singular spectrum analysis for interval‐valued time series. The proposed methods can be used to decompose and forecast the dynamics governing a set‐valued stochastic process. The resulting components on which the interval time series is decomposed can be understood as interval trendlines, cycles, or noise. Forecasting can be conducted through a linear recurrent method, and we devised generalizations of the decomposition method for the multivariate setting. The performance of the proposed methods is showcased in a simulation study. We apply the proposed methods so to track the dynamics governing the Argentina Stock Market (MERVAL) in real time, in a case study over a period of turbulence that led to discussions of the government of Argentina with the International Monetary Fund.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.2801
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:41:y:2022:i:1:p:167-180
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().