EconPapers    
Economics at your fingertips  
 

A Bayesian time‐varying autoregressive model for improved short‐term and long‐term prediction

Christoph Berninger, Almond Stöcker and David Rügamer

Journal of Forecasting, 2022, vol. 41, issue 1, 181-200

Abstract: Motivated by the application to German interest rates, we propose a time‐varying autoregressive model for short‐term and long‐term prediction of time series that exhibit a temporary nonstationary behavior but are assumed to mean revert in the long run. We use a Bayesian formulation to incorporate prior assumptions on the mean reverting process in the model and thereby regularize predictions in the far future. We use MCMC‐based inference by deriving relevant full conditional distributions and employ a Metropolis‐Hastings within Gibbs sampler approach to sample from the posterior (predictive) distribution. In combining data‐driven short‐term predictions with long‐term distribution assumptions our model is competitive to the existing methods in the short horizon while yielding reasonable predictions in the long run. We apply our model to interest rate data and contrast the forecasting performance to that of a 2‐Additive‐Factor Gaussian model as well as to the predictions of a dynamic Nelson‐Siegel model.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://doi.org/10.1002/for.2802

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:41:y:2022:i:1:p:181-200

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2021-12-25
Handle: RePEc:wly:jforec:v:41:y:2022:i:1:p:181-200