EconPapers    
Economics at your fingertips  
 

A novel deep learning model based on convolutional neural networks for employee churn prediction

Ebru Pekel Ozmen and Tuncay Ozcan

Journal of Forecasting, 2022, vol. 41, issue 3, 539-550

Abstract: Employees are one of the most important resources of a company. The churn of valuable employees significantly affects a company's performance. The design of systems that predict employee churn is critical importance for companies. At this point, machine learning algorithms offer important opportunities for the diagnosis of employee churn. Nowadays, traditional classification algorithms have been replaced by deep learning models. In this study, firstly, a convolutional neural network (CNN) model was applied on a numerical data set for employee churn prediction in retailing. Later, because the data loss is too much in data transformations, a new hybrid extended convolutional decision tree model (ECDT) was proposed by improving the CNN algorithm. Finally, a novel model (ECDT‐GRID) was developed by applying grid search optimization to improve the classification accuracy of ECDT. Numerical results showed that the developed ECDT‐GRID model outperformed the CNN and ECDT models and basic classification algorithms in terms of classification accuracy, and this model provided an efficient methodology for prediction of employee churn.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1002/for.2827

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:41:y:2022:i:3:p:539-550

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:41:y:2022:i:3:p:539-550