Distributional modeling and forecasting of natural gas prices
Jonathan Berrisch and
Florian Ziel
Journal of Forecasting, 2022, vol. 41, issue 6, 1065-1086
Abstract:
We examine the problem of modeling and forecasting European day‐ahead and month‐ahead natural gas prices. For this, we propose two distinct probabilistic models that can be utilized in risk and portfolio management. We use daily pricing data ranging from 2011 to 2020. Extensive descriptive data analysis shows that both time series feature heavy tails and conditional heteroscedasticity and show asymmetric behavior in their differences. We propose state‐space time series models under skewed, heavy‐tailed distributions to capture all stylized facts of the data. They include the impact of autocorrelation, seasonality, risk premia, temperature, storage levels, the price of European Emission Allowances, and related fuel prices of oil, coal, and electricity. We provide rigorous model diagnostics and interpret all model components in detail. Additionally, we conduct a probabilistic forecasting study with significance tests and compare the predictive performance against literature benchmarks. The proposed day‐ahead (month‐ahead) model leads to a 13% (9%) reduction in out‐of‐sample continuous ranked probability score (CRPS) compared with the best performing benchmark model, mainly due to adequate modeling of the volatility and heavy tails.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/for.2853
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:41:y:2022:i:6:p:1065-1086
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().