Subsampled factor models for asset pricing: The rise of Vasa
Gianluca De Nard,
Simon Hediger and
Markus Leippold
Journal of Forecasting, 2022, vol. 41, issue 6, 1217-1247
Abstract:
We propose a new method, variable subsample aggregation (VASA), for equity return prediction using a large‐dimensional set of factors. To demonstrate the effectiveness, robustness, and dimension reduction power of VASA, we perform a comparative analysis between state‐of‐the‐art machine learning algorithms. As a performance measure, we explore not only the global predictive but also the stock‐specific R2's and their distribution. While the global R2 reflects the average forecasting accuracy, we find that high variability in stock‐specific R2's can be detrimental for the portfolio performance. Since VASA shows minimal variability, portfolios formed on this method outperform the portfolios based on random forests and neural nets.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/for.2859
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:41:y:2022:i:6:p:1217-1247
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().