High‐frequency data and stock–bond investing
Yu‐Sheng Lai
Journal of Forecasting, 2022, vol. 41, issue 8, 1623-1638
Abstract:
Understanding the comovements between stock and bond returns is crucial in asset allocation. This paper employs a new class of multivariate covariance models with realized covariance measures for modeling the joint distribution of returns. Estimation results indicate that high‐frequency data not only enhance explanatory power but also sort out the features of heteroskedasticity with a short response time and short‐run momentum effects in describing the covariance dynamics. To confirm the efficiency of the models in covariance predictions, multiperiod volatility‐timing strategies are implemented to evaluate the benefits of incorporating the distinguishing features into the modeling. Out‐of‐sample forecasting results indicate that the models outperform conventional models in finding optimal portfolio shares and thus considerably reduce the conditional volatility in a portfolio. Consequently, investors with high risk aversions are willing to pay pronounced performance fees to obtain the economic value of volatility timing.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.2887
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:41:y:2022:i:8:p:1623-1638
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().