Predicting earnings management through machine learning ensemble classifiers
Ahmad Hammami and
Mohammad Hendijani Zadeh
Journal of Forecasting, 2022, vol. 41, issue 8, 1639-1660
Abstract:
In this paper, we utilize six novel ensemble classifiers to predict earnings management (EM) in both its forms, accrual‐based earnings management (AEM) and real earnings management (REM), and then compare the EM prediction accuracy of wrapper feature selection (FS) and filtering FS techniques in the context of EM. Specifically, we integrate three well‐known filtering FS techniques (information gain [IG], principal component analysis [PCA], and relief [Re]) and three popular wrapper FS techniques (particle swarm optimization [PSO], genetic algorithm [GA], and artificial bee colony [ABC]) with the support vector machine (SVM) to generate our ensemble classifiers. We then assess the performance of each of the six ensemble classifiers to predict AEM and REM based on three criteria: type Ι error, type ΙΙ error, and average accuracy. The results show that the ABC‐SVM ensemble classifier outperforms the others in predicting both AEM and REM. We also find that, overall, wrapper FS ensemble classifiers outperform filtering FS ensemble classifiers in predicting AEM and REM and that it is more difficult for our ensemble classifiers to predict REM than to predict AEM. This paper contributes to the literature on EM prediction by introducing six new ensemble classifiers. It is also the first work (to the best of our knowledge) in the domain of ensemble classifiers' applications (a) to consider both REM and AEM in one context and to show that REM is more difficult to predict than AEM and (b) to compare the performance of wrapper and filtering FS techniques in the EM prediction setting.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/for.2885
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:41:y:2022:i:8:p:1639-1660
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().