Text‐based soybean futures price forecasting: A two‐stage deep learning approach
Wuyue An,
Lin Wang and
Yu‐Rong Zeng
Journal of Forecasting, 2023, vol. 42, issue 2, 312-330
Abstract:
This paper investigates the soybean futures price prediction problem from a new perspective and proposes an effective prediction model named Two‐Stage Hybrid Long Short‐Term Memory (TSH‐LSTM) by using text data from social media. First, the unstructured text is transformed into structured data by sentiment analysis and text classification methods. The improved sentiment score is computed by combining the degree centrality of sentiment words based on the sentiment dictionary method, and the characteristics of price fluctuations in texts are learned through the text Recurrent Convolutional Neural Networks. Second, the significant relationship between social media features and soybean futures price is assessed through stepwise regression, and the results of such an assessment are used as a basis for the identification of significant factors as input variables of the prediction model. Finally, the TSH‐LSTM prediction model is designed, and the final prediction result is acquired through the combination of prediction results of each stage using the error reciprocal method. The empirical results indicate that the incorporation of the social media text feature helps improve forecasting performances. Specifically, the proposed TSH‐LSTM is more accurate than univariate LSTM, multivariate LSTM, and eXtreme Gradient Boosting.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/for.2909
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:2:p:312-330
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().