EconPapers    
Economics at your fingertips  
 

An evolutionary cost‐sensitive support vector machine for carbon price trend forecasting

Bangzhu Zhu, Jingyi Zhang, Chunzhuo Wan, Julien Chevallier and Ping Wang

Journal of Forecasting, 2023, vol. 42, issue 4, 741-755

Abstract: This paper aims at the imbalanced characteristics and proposes a novel evolutionary cost‐sensitive support vector machine (CSSVM) by integrating cost‐sensitive learning, support vector machine, and genetic algorithm for carbon price trend prediction. First, carbon price trend prediction is converted into a binary‐class prediction problem for CSSVM, in which a higher misclassification cost is imposed on the minority samples. In comparison, a more negligible misclassification cost is imposed on most samples. Second, a genetic algorithm (GA) is used to optimize all parameters of CSSVM synchronously. Taking Beijing, Hubei, and Guangdong carbon markets as samples, the empirical results show that the proposed model has a higher classification accuracy and lower misclassification costs compared with other popular prediction models. Furthermore, the sensitivity analysis verifies that the proposed approach is robust.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/for.2916

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:4:p:741-755

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:42:y:2023:i:4:p:741-755