EconPapers    
Economics at your fingertips  
 

Forecasting financial markets with semantic network analysis in the COVID‐19 crisis

Andrea Fronzetti Colladon, Stefano Grassi, Francesco Ravazzolo and Francesco Violante

Journal of Forecasting, 2023, vol. 42, issue 5, 1187-1204

Abstract: This paper uses a new textual data index for predicting stock market data. The index is applied to a large set of news to evaluate the importance of one or more general economic‐related keywords appearing in the text. The index assesses the importance of the economic‐related keywords, based on their frequency of use and semantic network position. We apply it to the Italian press and construct indices to predict Italian stock and bond market returns and volatilities in a recent sample period, including the COVID‐19 crisis. The evidence shows that the index captures the different phases of financial time series well. Moreover, results indicate strong evidence of predictability for bond market data, both returns and volatilities, short and long maturities, and stock market volatility.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.2936

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:5:p:1187-1204

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:42:y:2023:i:5:p:1187-1204