EconPapers    
Economics at your fingertips  
 

Yield spread selection in predicting recession probabilities

Jaehyuk Choi, Desheng Ge, Kyu Ho Kang and Sungbin Sohn

Journal of Forecasting, 2023, vol. 42, issue 7, 1772-1785

Abstract: The literature on using yield curves to forecast recessions customarily uses 10‐year–3‐month Treasury yield spread without verification on the pair selection. This study investigates whether the predictive ability of spread can be improved by letting a machine learning algorithm identify the best maturity pair and coefficients. Our comprehensive analysis shows that, despite the likelihood gain, the machine learning approach does not significantly improve prediction, owing to the estimation error. This is robust to the forecasting horizon, control variable, sample period, and oversampling of the recession observations. Our finding supports the use of the 10‐year–3‐month spread.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/for.2980

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:7:p:1772-1785

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:42:y:2023:i:7:p:1772-1785