Effective multi‐step ahead container throughput forecasting under the complex context
Yi Xiao,
Minghu Xie,
Yi Hu and
Ming Yi
Journal of Forecasting, 2023, vol. 42, issue 7, 1823-1843
Abstract:
Accurate and effective container throughput forecasting plays an essential role in economic dispatch and port operations, especially in the complex and uncertain context of the global Covid‐19 pandemic. In light of this, this research proposes an effective multi‐step ahead forecasting model called EWT‐TCN‐KMSE. Specifically, we initially use the empirical wavelet transform (EWT) to decompose the original container throughput series into multiple components with varying frequencies. Subsequently, the state‐of‐the‐art temporal convolutional network is utilized to predict the decomposed components individually, during which an improved loss function that combines mean square error (MSE) and kernel trick is employed. Eventually, the deduced prediction results can be obtained by integrating the predicted values of each component. In particular, this research introduces the MIMO (multi‐input and multi‐output) strategy to conduct multi‐step ahead container throughput forecasting. Based on the experiments in Shanghai port and Ningbo‐Zhoushan port, it can be found that the proposed model shows its superiority over benchmark models in terms of accuracy, stability, and significance in container throughput forecasting. Therefore, our proposed model can assist port operators in their daily management and decision making.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.2986
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:7:p:1823-1843
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().