Forecasting nonstationary time series
Lukasz T. Gatarek and
Aleksander Welfe
Journal of Forecasting, 2023, vol. 42, issue 7, 1930-1949
Abstract:
Many variables show a tendency to increase over time in line with their nonstationary nature. It is notable, however, that the original time series can be transformed into a sequence of jumps measured by time distances between the successive maxima and present the resulting series as the compound Poisson process, which has powerful consequences discussed in the paper. Firstly, the jump‐generating process is stationary, unlike the one generating the original data. Secondly, the dynamics of a variable can be determined using solely the properties of the derived stationary counterpart. Thirdly, using this framework for prediction offers substantial advantages. The proposed methodology allows forecasting the number of periods necessary for a process to achieve the desired level and decomposing the path leading to that level into jumps of different size. It also gives a unique insight into the shape of the trajectory over the prediction horizon, which the traditional approach to the forecasting of nonstationary time series is incapable of providing.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.2998
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:7:p:1930-1949
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().