Mixed‐frequency predictive regressions with parameter learning
Markus Leippold and
Hanlin Yang
Journal of Forecasting, 2023, vol. 42, issue 8, 1955-1972
Abstract:
We explore the performance of mixed‐frequency predictive regressions for stock returns from the perspective of a Bayesian investor. We develop a constrained parameter learning approach for sequential estimation allowing for belief revisions. Empirically, we find that mixed‐frequency models improve predictability, not only because of the combination of predictors with different frequencies but also due to the preservation of high‐frequency features such as time‐varying volatility. Temporally aggregated models misspecify the evolution frequency of the volatility dynamics, resulting in poor volatility timing and worse portfolio performance than the mixed‐frequency specification. These results highlight the importance of preserving the potential mixed‐frequency nature of predictors and volatility in predictive regressions.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.2999
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:8:p:1955-1972
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().