EconPapers    
Economics at your fingertips  
 

Mixed‐frequency predictive regressions with parameter learning

Markus Leippold and Hanlin Yang

Journal of Forecasting, 2023, vol. 42, issue 8, 1955-1972

Abstract: We explore the performance of mixed‐frequency predictive regressions for stock returns from the perspective of a Bayesian investor. We develop a constrained parameter learning approach for sequential estimation allowing for belief revisions. Empirically, we find that mixed‐frequency models improve predictability, not only because of the combination of predictors with different frequencies but also due to the preservation of high‐frequency features such as time‐varying volatility. Temporally aggregated models misspecify the evolution frequency of the volatility dynamics, resulting in poor volatility timing and worse portfolio performance than the mixed‐frequency specification. These results highlight the importance of preserving the potential mixed‐frequency nature of predictors and volatility in predictive regressions.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.2999

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:8:p:1955-1972

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:1955-1972