EconPapers    
Economics at your fingertips  
 

Deep learning on mixed frequency data

Qifa Xu, Zezhou Wang, Cuixia Jiang and Yezheng Liu

Journal of Forecasting, 2023, vol. 42, issue 8, 2099-2120

Abstract: In deep learning, it is common to encounter data observed at different frequencies. Mixed data sampling (MIDAS) is an efficient technique for handling mixed frequency data, where a high frequency predictor is converted into a set of low frequency variables using the frequency alignment approach and parametric function constraints. This efficiently prevents the proliferation of parameters, ensuring the consistency of data frequency. We introduce the MIDAS technique into the deep learning architecture and develop a novel deep learning‐MIDAS (DL‐MIDAS) model, which enables to conduct deep learning on raw mixed frequency data directly. Its efficacy is then illustrated through extensive Monte Carlo simulations and a real‐world application. The simulation experiments show that the DL‐MIDAS model is able to explore nonlinear patterns in mixed frequency data and achieves more stable and accurate prediction results than several competing models, such as the artificial neural network for mixed frequency data (ANN‐MIDAS), long short‐term memory (LSTM), and MIDAS regressions. Additionally, the real‐world application of predicting the inflation rate of China also confirms the strength of DL‐MIDAS. The model can exploit high frequency information contained in financial market to produce timely and accurate prediction results on the inflation rate.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/for.3003

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:8:p:2099-2120

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2099-2120