Daily tourism forecasting through a novel method based on principal component analysis, grey wolf optimizer, and extreme learning machine
Chuan Zhang,
Ao‐Yun Hu and
Yu‐Xin Tian
Journal of Forecasting, 2023, vol. 42, issue 8, 2121-2138
Abstract:
Accurate forecasting tourism demand is crucial for improving the economic benefits of tourist attractions, but it is a challenging task. In this paper, we propose an effective daily tourism forecast model, principal component analysis‐grey wolf optimizer‐extreme learning machine (PCA‐GWO‐ELM), based on Baidu index data, holiday data, and weather data. Our model uses PCA to reduce the dimensionality of the data and employs the GWO to optimize the number of neural networks in the hidden layer of the ELM model, improving its forecast performance. We conduct an empirical study using the collected tourist data of Mount Siguniang. The results show that the proposed hybrid forecasting model outperforms other models in daily tourism demand forecasting, making it a potential candidate method for practitioners and researchers studying tourism demand forecasting.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3007
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:42:y:2023:i:8:p:2121-2138
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().