Intrusion detection system using metaheuristic fireworks optimization based feature selection with deep learning on Internet of Things environment
T. Jayasankar,
R. Kiruba Buri and
P. Maheswaravenkatesh
Journal of Forecasting, 2024, vol. 43, issue 2, 415-428
Abstract:
Internet of Things (IoT), cloud computing, and other significant advancements in communication have created new security challenges. Due to these advancements and the ineffectiveness of the current security measures, cyber‐attacks are also increasing quickly. Recently, several artificial intelligence (AI)–based solutions have been presented for various secure applications, such as intrusion detection. This article proposes an intrusion detection system using dynamic search fireworks optimization–based feature selection with optimal deep recurrent neural network (DFWAFS‐ODRNN) model in IoT environment. The presented DFWAFS‐ODRNN model follows a two‐stage process, namely, feature selection and intrusion classification. In the first phase, the DFWAFS‐ODRNN model elects an optimal subset of features using the dynamic search fireworks optimization algorithm (DFWAFS) technique. Next, in the second stage, the intrusions are identified and categorized using the DRNN model. At last, the hyperparameters of the DRNN are optimally chosen by the Nadam optimizer. A detailed simulation analysis of the DFWAFS‐ODRNN model is validated on benchmark intrusion detection system (IDS) dataset, and the outcomes show the efficacy of intrusion detection. The proposed model efficiently detects the intrusion detection with an accuracy of 96.11%.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3037
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:2:p:415-428
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().