Forecasting tourist flows in the COVID‐19 era using nonparametric mixed‐frequency VARs
Wanhai You,
Yuming Huang and
Chien‐Chiang Lee
Journal of Forecasting, 2024, vol. 43, issue 2, 473-489
Abstract:
It is widely recognized that the tourism industry is susceptible to crisis or natural disaster. Although some literature has studied the consequences of the crisis and disaster, there remains a lack of study on the effect of COVID‐19. Against this background, this paper investigates the tourist flow forecasting by adopting an advanced nonparametric mixed‐frequency vector autoregressions model using Bayesian additive regression trees. This is particularly suitable for forecasting the presence of extreme observations, for example, the COVID‐19 pandemic. We investigate tourism demand forecasting using a large number of predictors, including industrial production index, CPI, exchange rate, economic policy uncertainty, Google trends index, and COVID‐19 infection rate. The data used for this study relate to tourist flows in Chinese Hong Kong, Japan, and South Korea. Empirical study demonstrates that this novel model significantly outperforms the traditional mixed‐frequency vector autoregressions model to quarterly tourist flow forecasting. Therefore, this model can significantly enhance tourism forecast accuracy in the face of extreme events. This study contributes to the literature on tourism forecasting and provides policymakers with policy implications.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/for.3044
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:2:p:473-489
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().