Tail risk forecasting with semiparametric regression models by incorporating overnight information
Cathy W. S. Chen,
Takaaki Koike and
Wei‐Hsuan Shau
Journal of Forecasting, 2024, vol. 43, issue 5, 1492-1512
Abstract:
This research incorporates realized volatility and overnight information into risk models, wherein the overnight return often contributes significantly to the total return volatility. Extending a semiparametric regression model based on asymmetric Laplace distribution, we propose a family of RES‐CAViaR‐oc models by adding overnight return and realized measures as a nowcasting technique for simultaneously forecasting Value‐at‐Risk (VaR) and expected shortfall (ES). We utilize Bayesian methods to estimate unknown parameters and forecast VaR and ES jointly for the proposed model family. We also conduct extensive backtests based on joint elicitability of the pair of VaR and ES during the out‐of‐sample period. Our empirical study on four international stock indices confirms that overnight return and realized volatility are vital in tail risk forecasting.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3090
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:5:p:1492-1512
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().