EconPapers    
Economics at your fingertips  
 

Robust approach to earnings forecast: A comparison

Xiaojian Yu, Xiaoqian Zhang and Donald Lien

Journal of Forecasting, 2024, vol. 43, issue 5, 1530-1558

Abstract: This paper applies three robust approaches, namely, the MM estimation, the Theil–Sen estimation, and the quantile regression, to generate earnings forecasts in Chinese financial market and evaluates the forecast accuracy of these three methods based on three forecasting criteria. We examine six forecasting models where the predicted variables include earnings per share, net income, and three profitability measures. We show that the three robust methods significantly outperform the OLS method. Moreover, the MM estimation and the quantile regression have better forecast accuracy than the Theil–Sen approach.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.3085

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:5:p:1530-1558

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1530-1558