Do search queries predict violence against women? A forecasting model based on Google Trends
Nicolás Gonzálvez‐Gallego,
María Concepción Pérez‐Cárceles and
Laura Nieto‐Torrejón
Journal of Forecasting, 2024, vol. 43, issue 5, 1607-1614
Abstract:
This paper introduces a new indicator for reported intimate partner violence against women based on search query time series from Google Trends. This indicator is built up from the relative popularity of three topic‐related keywords. We propose a predictive model based on this specific Google index that is assessed relative to two alternative models: the first one includes the lagged variable, while the second one considers fatalities as a predictor. This comparative analysis is run in two different samples, whether the reported cases are a direct consequence of a violent direct or not. Our results show that the predictive model based on Google data significantly outperforms the other two models, regardless the sample and the forecast horizon. Then, using information gathered from Google queries may improve the allocation and management of resources and services to protect women against this form of violence and to improve risk assessment.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3102
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:5:p:1607-1614
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().