EconPapers    
Economics at your fingertips  
 

Do search queries predict violence against women? A forecasting model based on Google Trends

Nicolás Gonzálvez‐Gallego, María Concepción Pérez‐Cárceles and Laura Nieto‐Torrejón

Journal of Forecasting, 2024, vol. 43, issue 5, 1607-1614

Abstract: This paper introduces a new indicator for reported intimate partner violence against women based on search query time series from Google Trends. This indicator is built up from the relative popularity of three topic‐related keywords. We propose a predictive model based on this specific Google index that is assessed relative to two alternative models: the first one includes the lagged variable, while the second one considers fatalities as a predictor. This comparative analysis is run in two different samples, whether the reported cases are a direct consequence of a violent direct or not. Our results show that the predictive model based on Google data significantly outperforms the other two models, regardless the sample and the forecast horizon. Then, using information gathered from Google queries may improve the allocation and management of resources and services to protect women against this form of violence and to improve risk assessment.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.3102

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:5:p:1607-1614

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1607-1614