EconPapers    
Economics at your fingertips  
 

Forecasting peak electric load: Robust support vector regression with smooth nonconvex ϵ‐insensitive loss

Rujia Nie, Jinxing Che, Fang Yuan and Weihua Zhao

Journal of Forecasting, 2024, vol. 43, issue 6, 1902-1917

Abstract: Peak power load forecasting is a key part of the commercial operation of the energy industry. Although various load forecasting methods and technologies have been put forward and tested in practice, the growing subject of tolerance for abnormal accidents is to develop robust peak load forecasting models. In this paper, we propose a robust smooth non‐convex support vector regression method, which improves the robustness of the model by adjusting adaptive control loss values and adaptive robust parameters and by reducing the negative impact of outliers or noise on the decision function. A concave‐convex programming algorithm is used to solve the non‐convexity of the optimization problem. Good results are obtained in both linear regression model and nonlinear regression model and two real data sets. An experiment is carried out in a power company in Jiangxi Province, China, to evaluate the performance of the robust smooth non‐convex support vector regression model. The results show that the proposed method is superior to support vector regression and generalized quadratic non‐convex support vector regression in robustness and generalization ability.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.3118

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:6:p:1902-1917

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:1902-1917