EconPapers    
Economics at your fingertips  
 

Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures

Zhimin Wu and Guanghui Cai

Journal of Forecasting, 2024, vol. 43, issue 6, 1956-1974

Abstract: In recent years, the semiparametric methods for the joint estimation and prediction of value at risk (VaR) and expected shortfall (ES) have triggered great interests and attention. Compared to existing literature which usually incorporates realized volatility (RV) into the dynamic semiparametric risk models, this paper considers three more robust proxies (medRV, BPV, and RK) of intraday volatility in the models to verify whether high‐frequency information can improve the joint prediction ability of risk measures. To strengthen the persuasion of conclusions, four international stock indices (S&P500, Nikkei225, GDAXI, and DJIA) are applied to these models to estimate and forecast VaR and ES at different probability levels (1%, 2.5%, 5%, and 10%). Then, the predicted VaR and ES are backtested by several methods individually, and the popular score function FZ0 and MCS test are used to compare the effects of jointly predicting risk measures. Our results confirm that these semiparametric models containing intraday information outperform the benchmark models for four stocks and various probability levels, and medRV is the best volatility measure in improving the effects of models.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.3111

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:6:p:1956-1974

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:1956-1974