A systematic vector autoregressive framework for modeling and forecasting mortality
Jackie Li,
Jia Liu and
Adam Butt
Journal of Forecasting, 2024, vol. 43, issue 6, 2279-2297
Abstract:
Recently, there is a new stream of mortality forecasting research using the vector autoregressive model with different sparse model specifications. They have been shown to be able to overcome some of the limitations of the more traditional factor models such as the Lee–Carter model. In this paper, we propose a more generalized systematic vector autoregressive framework for modeling and forecasting mortality. Under this framework, we progressively increase the sophistication of the diagonal parameters in the autoregressive matrix and formulate a range of model structures in a systematic fashion. They offer much flexibility for capturing the mortality patterns of different populations. The resulting models produce age coherent forecasts, and their parameters are reasonably interpretable for modelers, demographers, and industry practitioners. Using the mortality data of Australia, Japan, New Zealand, and Taiwan, we demonstrate that the proposed approach generates appropriate forecasts of mortality rates and life expectancies and produces very good performance in the fitting and out‐of‐sample analysis.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3127
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:6:p:2279-2297
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().