A novel semisupervised learning method with textual information for financial distress prediction
Yue Qiu,
Jiabei He,
Zhensong Chen,
Yinhong Yao and
Yi Qu
Journal of Forecasting, 2024, vol. 43, issue 7, 2478-2494
Abstract:
Financial distress prediction (FDP) has attracted high attention from many financial institutions. Utilizing supervised learning‐based methods in FDP, however, is time consuming and labor intensive. Therefore, in this paper, we exploit active‐pSVM method, which combines potential data distribution information and existing expert experience to solve FDP problem. Moreover, with the increasingly popular textual information, we construct several features on our protocol that are based on the Management Discussion and Analysis (MD&A) text information. Using datasets that are collected in different time windows from the listed Chinese companies, we conducted an extensive experiment and were able to confirm a better efficiency of our active‐pSVM, when compared with some common supervised learning‐based methods. Our study also covers the application of MD&A text information on weakly supervised learning model in FDP.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3136
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:43:y:2024:i:7:p:2478-2494
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().