A new probability forecasting model for cotton yarn futures price volatility with explainable AI and big data
Huosong Xia,
Xiaoyu Hou,
Justin Zuopeng Zhang and
Mohammad Zoynul Abedin
Journal of Forecasting, 2025, vol. 44, issue 1, 112-135
Abstract:
Cotton, cotton yarn, and other cotton products have frequent price volatility, increasing the difficulty for industry participants to develop rational business decision plans. To support cotton textile industry decision‐makers, we apply data mining methods to extract the main influencing factors affecting cotton yarn futures prices from big data and build a probabilistic forecasting model for cotton yarn price volatility with uncertainty assessment. Based on Explainable Artificial Intelligence (XAI) and data‐driven perspectives, we use the LassoNet algorithm to extract 18 features most relevant to the target variable from the massive data and visualize the importance values of the selected features to improve the reliability. Moreover, by combining conformal forecasting (CP) with quantile regression (QR), the uncertainty measure of the point estimation results of the long and short‐term memory (LSTM) model is applied to improve the application value of the model. Finally, SHAP (SHapley Additive exPlanations) is introduced to analyze the SHAP values of the input features on the output results and to explore in depth the interaction and mechanism of action between the input features and the target variables to improve the explainability of the model. Our model provides a “big data‐forecasting model‐decision support” decision paradigm for real‐world problems.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3185
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:44:y:2025:i:1:p:112-135
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().