Extended Multivariate EGARCH Model: A Model for Zero‐Return and Negative Spillovers
Yongdeng Xu
Journal of Forecasting, 2025, vol. 44, issue 4, 1266-1279
Abstract:
This paper introduces an extended multivariate EGARCH model that overcomes the zero‐return problem and allows for negative news and volatility spillover effects, making it an attractive tool for multivariate volatility modeling. Despite limitations, such as noninvertibility and unclear asymptotic properties of the QML estimator, our Monte Carlo simulations indicate that the standard QML estimator is consistent and asymptotically normal for larger sample sizes (i.e., T≥2500). Two empirical examples demonstrate the model's superior performance compared to multivariate GJR‐GARCH and Log‐GARCH models in volatility modeling. The first example analyzes the daily returns of three stocks from the DJ30 index, while the second example investigates volatility spillover effects among the bond, stock, crude oil, and gold markets. Overall, this extended multivariate EGARCH model offers a flexible and comprehensive framework for analyzing multivariate volatility and spillover effects in empirical finance research.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3243
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:44:y:2025:i:4:p:1266-1279
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().