Economics at your fingertips  

On the enhanced convergence of standard lattice methods for option pricing

Martin Widdicks, Ari D. Andricopoulos, David P. Newton and Peter W. Duck

Journal of Futures Markets, 2002, vol. 22, issue 4, 315-338

Abstract: For derivative securities that must be valued by numerical techniques, the trade‐off between accuracy and computation time can be a severe limitation. For standard lattice methods, improvements are achievable by modifying the underlying structure of these lattices; however, convergence usually remains non‐monotonic. In an alternative approach of general application, it is shown how to use standard methods, such as Cox, Ross, and Rubinstein (CRR), trinomial trees, or finite differences, to produce uniformly converging numerical results suitable for straightforward extrapolation. The concept of Λ, a normalized distance between the strike price and the node above, is introduced, which has wide ranging significance. Accuracy is improved enormously with computation times reduced, often by orders of magnitude. © 2002 Wiley Periodicals, Inc. Jrl Fut Mark 22:315–338, 2002

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0270-7314

Access Statistics for this article

Journal of Futures Markets is currently edited by Robert I. Webb

More articles in Journal of Futures Markets from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

Page updated 2019-03-19
Handle: RePEc:wly:jfutmk:v:22:y:2002:i:4:p:315-338