Pricing continuously sampled Asian options with perturbation method
Jin E. Zhang
Journal of Futures Markets, 2003, vol. 23, issue 6, 535-560
Abstract:
This article explores the price of continuously sampled Asian options. For geometric Asian options, we present pricing formulas for both backward‐starting and forward‐starting cases. For arithmetic Asian options, we demonstrate that the governing partial differential equation (PDE) cannot be transformed into a heat equation with constant coefficients; therefore, these options do not have a closed‐form solution of the Black–Scholes type, that is, the solution is not given in terms of the cumulative normal distribution function. We then solve the PDE with a perturbation method and obtain an analytical solution in a series form. Numerical results show that as compared with Zhang's ( 2001 ) highly accurate numerical results, the series converges very quickly and gives a good approximate value that is more accurate than any other approximate method in the literature, at least for the options tested in this article. Graphical results determine that the solution converges globally very quickly especially near the origin, which is the area in which most of the traded Asian options fall. © 2003 Wiley Periodicals, Inc. Jrl Fut Mark 23:535–560, 2003
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jfutmk:v:23:y:2003:i:6:p:535-560
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0270-7314
Access Statistics for this article
Journal of Futures Markets is currently edited by Robert I. Webb
More articles in Journal of Futures Markets from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().