EconPapers    
Economics at your fingertips  
 

Canonical valuation of options in the presence of stochastic volatility

Philip Gray and Scott Newman

Journal of Futures Markets, 2005, vol. 25, issue 1, 1-19

Abstract: Proposed by M. Stutzer (1996), canonical valuation is a new method for valuing derivative securities under the risk‐neutral framework. It is nonparametric, simple to apply, and, unlike many alternative approaches, does not require any option data. Although canonical valuation has great potential, its applicability in realistic scenarios has not yet been widely tested. This article documents the ability of canonical valuation to price derivatives in a number of settings. In a constant‐volatility world, canonical estimates of option prices struggle to match a Black‐Scholes estimate based on historical volatility. However, in a more realistic stochastic‐volatility setting, canonical valuation outperforms the Black‐Scholes model. As the volatility generating process becomes further removed from the constant‐volatility world, the relative performance edge of canonical valuation is more evident. In general, the results are encouraging that canonical valuation is a useful technique for valuing derivatives. © 2005 Wiley Periodicals, Inc. Jrl Fut Mark 25:1–19, 2005

Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jfutmk:v:25:y:2005:i:1:p:1-19

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0270-7314

Access Statistics for this article

Journal of Futures Markets is currently edited by Robert I. Webb

More articles in Journal of Futures Markets from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jfutmk:v:25:y:2005:i:1:p:1-19