Option pricing under extended normal distribution
Hosam Ki,
Byungwook Choi,
Kook‐Hyun Chang and
Miyoung Lee
Journal of Futures Markets, 2005, vol. 25, issue 9, 845-871
Abstract:
This article proposes a closed pricing formula for European options when the return of the underlying asset follows extended normal distribution, that is, any different degrees of skewness and kurtosis relative to the normal distribution induced by the Black‐Scholes model. The moment restriction is suggested, so that the pricing model under any arbitrary distribution for an underlying asset must satisfy the arbitrage‐free condition. Numerical experiments and comparison of empirical performance of the proposed model with the Black‐Scholes, ad hoc Black‐Scholes, and Gram‐Charlier distribution models are carried out. In particular, an estimation of implied parameters such as standard deviation, skewness, and kurtosis of the return on the underlying asset from the market prices of the KOSPI 200 index options is made, and in‐sample and out‐of‐sample tests are performed. These results not only support the previous finding that the actual density of the underlying asset shows skewness to the left and high peaks, but also demonstrate that the present model has good explanatory power for option prices. © 2005 Wiley Periodicals, Inc. Jrl Fut Mark 25:845–871, 2005
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jfutmk:v:25:y:2005:i:9:p:845-871
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0270-7314
Access Statistics for this article
Journal of Futures Markets is currently edited by Robert I. Webb
More articles in Journal of Futures Markets from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().