Forecasting performance of extreme‐value volatility estimators
Vipul and
Joshy Jacob
Journal of Futures Markets, 2007, vol. 27, issue 11, 1085-1105
Abstract:
This study evaluates the forecasting performance of extreme‐value volatility estimators for the equity‐based Nifty Index using two‐scale realized volatility. This benchmark mitigates the effect of microstructure noise in the realized volatility. Extreme‐value estimates with relatively simple forecasting methods provide substantially better short‐term and long‐term forecasts, compared to historical volatility. The higher efficiency of extreme‐value estimators is primarily responsible for this improvement. The extent of possible improvement in forecasts is likely to be economically significant for applications like options pricing. By including extremevalue estimators, the forecasting performance of generalized autoregressive conditional heteroscedasticity (GARCH) can also be improved. © 2007 Wiley Periodicals, Inc. Jrl Fut Mark 27: 1085–1105, 2007
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jfutmk:v:27:y:2007:i:11:p:1085-1105
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0270-7314
Access Statistics for this article
Journal of Futures Markets is currently edited by Robert I. Webb
More articles in Journal of Futures Markets from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().