On the rate of convergence of binomial Greeks
San‐Lin Chung,
Weifeng Hung,
Han‐Hsing Lee and
Pai‐Ta Shih
Journal of Futures Markets, 2011, vol. 31, issue 6, 562-597
Abstract:
This study investigates the convergence patterns and the rates of convergence of binomial Greeks for the CRR model and several smooth price convergence models in the literature, including the binomial Black–Scholes (BBS) model of Broadie M and Detemple J ( 1996 ), the flexible binomial model (FB) of Tian YS ( 1999 ), the smoothed payoff (SPF) approach of Heston S and Zhou G ( 2000 ), the GCRR‐XPC models of Chung SL and Shih PT ( 2007 ), the modified FB‐XPC model, and the modified GCRR‐FT model. We prove that the rate of convergence of the CRR model for computing deltas and gammas is of order O(1/n), with a quadratic error term relating to the position of the final nodes around the strike price. Moreover, most smooth price convergence models generate deltas and gammas with monotonic and smooth convergence with order O(1/n). Thus, one can apply an extrapolation formula to enhance their accuracy. The numerical results show that placing the strike price at the center of the tree seems to enhance the accuracy substantially. Among all the binomial models considered in this study, the FB‐XPC and the GCRR‐XPC model with a two‐point extrapolation are the most efficient methods to compute Greeks. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jfutmk:v:31:y:2011:i:6:p:562-597
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0270-7314
Access Statistics for this article
Journal of Futures Markets is currently edited by Robert I. Webb
More articles in Journal of Futures Markets from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().