The Binomial CEV Model and the Greeks
Aricson Cruz and
José Carlos Dias
Journal of Futures Markets, 2017, vol. 37, issue 1, 90-104
Abstract:
This article compares alternative binomial approximation schemes for computing the option hedge ratios studied by Chung and Shackleton (2002), Chung, Hung, Lee, and Shih (2011), and Pelsser and Vorst (1994) under the lognormal assumption, but now considering the constant elasticity of variance (CEV) process proposed by Cox (1975) and using the continuous‐time analytical Greeks recently offered by Larguinho, Dias, and Braumann (2013) as the benchmarks. Among all the binomial models considered in this study, we conclude that an extended tree binomial CEV model with the smooth and monotonic convergence property is the most efficient method for computing Greeks under the CEV diffusion process because one can apply the two‐point extrapolation formula suggested by Chung et al. (2011). © 2016 Wiley Periodicals, Inc. Jrl Fut Mark 37:90–104, 2017
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jfutmk:v:37:y:2017:i:1:p:90-104
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0270-7314
Access Statistics for this article
Journal of Futures Markets is currently edited by Robert I. Webb
More articles in Journal of Futures Markets from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().