Transfer‐entropy‐based dynamic feature selection for evaluating Bitcoin price drivers
Sasan Barak and
Navid Parvini
Journal of Futures Markets, 2023, vol. 43, issue 12, 1695-1726
Abstract:
Despite the growing literature in cryptocurrency forecasting and their price drivers, the relationship between their price and other financial time series is an ongoing matter of debate. This study proposes a three‐step methodology to cover these arguments. First, we conduct an ad hoc analysis using transfer entropy (TE) to study the causal relationship between Bitcoin (BTC) returns and a vast array of financial time series. Then, we utilize variables with a significant amount of information flow toward BTC returns to forecast multi‐step‐ahead BTC returns. Finally, we use explainable artificial intelligence post hoc analysis methods to discover the contribution of each input feature to the overall forecasting. The results indicate a significant change in the information flow pattern in the first days of the COVID‐19 pandemic outbreak. Additionally, our proposed TE‐based feature‐selection method outperforms both benchmarks, a nonfeature‐selection model, and backward stepwise regression.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/fut.22453
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jfutmk:v:43:y:2023:i:12:p:1695-1726
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0270-7314
Access Statistics for this article
Journal of Futures Markets is currently edited by Robert I. Webb
More articles in Journal of Futures Markets from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().