EconPapers    
Economics at your fingertips  
 

Well‐Posedness of the Cauchy Problem for Hyperbolic Equations with Non‐Lipschitz Coefficients

Akbar B. Aliev and Gulnara D. Shukurova

Abstract and Applied Analysis, 2009, vol. 2009, issue 1

Abstract: We consider hyperbolic equations with anisotropic elliptic part and some non‐Lipschitz coefficients. We prove well‐posedness of the corresponding Cauchy problem in some functional spaces. These functional spaces have finite smoothness with respect to variables corresponding to regular coefficients and infinite smoothness with respect to variables corresponding to singular coefficients.

Date: 2009
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2009/182371

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2009:y:2009:i:1:n:182371

Access Statistics for this article

More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlaaa:v:2009:y:2009:i:1:n:182371