EconPapers    
Economics at your fingertips  
 

Approximation of Mixed‐Type Functional Equations in Menger PN‐Spaces

M. Eshaghi Gordji, H. Khodaei, Y. W. Lee and G. H. Kim

Abstract and Applied Analysis, 2012, vol. 2012, issue 1

Abstract: Let X and Y be vector spaces. We show that a function f : X → Y with f(0) = 0 satisfies Δf(x1, …, xn) = 0 for all x1, …, xn ∈ X, if and only if there exist functions C : X × X × X → Y, B : X × X → Y and A : X → Y such that f(x) = C(x, x, x) + B(x, x) + A(x) for all x ∈ X, where the function C is symmetric for each fixed one variable and is additive for fixed two variables, B is symmetric bi‐additive, A is additive and Δf(x1, …, xn) = ∑k=2n(∑i1=2k∑i2=i1+1k+1⋯∑in-k+1=in-k+1n)f(∑i=1,i≠i1,…,in-k+1nxi-∑r=1n-k+1xir)+f(∑i=1nxi)-2n-2∑i=2n(f(x1+xi)+f(x1-xi))+2n−1(n − 2)f(x1) (n ∈ ℕ, n ≥ 3) for all x1, …, xn ∈ X. Furthermore, we solve the stability problem for a given function f satisfying Δf(x1, …, xn) = 0, in the Menger probabilistic normed spaces.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2012/392179

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2012:y:2012:i:1:n:392179

Access Statistics for this article

More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlaaa:v:2012:y:2012:i:1:n:392179