Approximation of Mixed‐Type Functional Equations in Menger PN‐Spaces
M. Eshaghi Gordji,
H. Khodaei,
Y. W. Lee and
G. H. Kim
Abstract and Applied Analysis, 2012, vol. 2012, issue 1
Abstract:
Let X and Y be vector spaces. We show that a function f : X → Y with f(0) = 0 satisfies Δf(x1, …, xn) = 0 for all x1, …, xn ∈ X, if and only if there exist functions C : X × X × X → Y, B : X × X → Y and A : X → Y such that f(x) = C(x, x, x) + B(x, x) + A(x) for all x ∈ X, where the function C is symmetric for each fixed one variable and is additive for fixed two variables, B is symmetric bi‐additive, A is additive and Δf(x1, …, xn) = ∑k=2n(∑i1=2k∑i2=i1+1k+1⋯∑in-k+1=in-k+1n)f(∑i=1,i≠i1,…,in-k+1nxi-∑r=1n-k+1xir)+f(∑i=1nxi)-2n-2∑i=2n(f(x1+xi)+f(x1-xi))+2n−1(n − 2)f(x1) (n ∈ ℕ, n ≥ 3) for all x1, …, xn ∈ X. Furthermore, we solve the stability problem for a given function f satisfying Δf(x1, …, xn) = 0, in the Menger probabilistic normed spaces.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2012/392179
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2012:y:2012:i:1:n:392179
Access Statistics for this article
More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().