EconPapers    
Economics at your fingertips  
 

The Global Weak Solution for a Generalized Camassa‐Holm Equation

Shaoyong Lai

Abstract and Applied Analysis, 2013, vol. 2013, issue 1

Abstract: A nonlinear generalization of the famous Camassa‐Holm model is investigated. Provided that initial value u0 ∈ Hs(R)(1 ≤ s ≤ 3/2) and (1-∂x2)u0 satisfies an associated sign condition, it is shown that there exists a unique global weak solution to the equation in space u(t, x) ∈ L2([0, +∞), Hs(R)) in the sense of distribution, and ux ∈ L∞([0, +∞) × R).

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2013/838302

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2013:y:2013:i:1:n:838302

Access Statistics for this article

More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlaaa:v:2013:y:2013:i:1:n:838302