EconPapers    
Economics at your fingertips  
 

Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices

Daeyeoul Kim, Abdelmejid Bayad and Joongsoo Park

Abstract and Applied Analysis, 2014, vol. 2014, issue 1

Abstract: We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D2k(n)=(1/4)σ21,0k+(n;224)-·42kσ21k+(n/) -(1/2)[∑d|n,d≡14 () {E2k(d)+E2k(d-1)}+22k∑d|n,d≡12 ()E2k((d+(-1) (d-1)/2)/2)], U2k(p, q) = 22k−2[−((p + q)/2)E2k((p + q)/2 + 1)+((q − p)/2)E2k((q − p)/2) − E2k((p + 1)/2) − E2k((q + 1)/2) + E2k+1((p + q)/2 + 1) − E2k+1((q − p)/2)], and F2k(n)=(1/2){σ21k+†(n)-σ2k†(n)}. As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2014/289187

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2014:y:2014:i:1:n:289187

Access Statistics for this article

More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlaaa:v:2014:y:2014:i:1:n:289187