Reverses of the Jensen‐Type Inequalities for Signed Measures
Rozarija Jakšić,
Josip Pečarić and
Mirna Rodić Lipanović
Abstract and Applied Analysis, 2014, vol. 2014, issue 1
Abstract:
In this paper we derive refinements of the Jensen type inequalities in the case of real Stieltjes measure dλ, not necessarily positive, which are generalizations of Jensen′s inequality and its reverses for positive measures. Furthermore, we investigate the exponential and logarithmic convexity of the difference between the left‐hand and the right‐hand side of these inequalities and give several examples of the families of functions for which the obtained results can be applied. The outcome is a new class of Cauchy‐type means.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2014/626359
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2014:y:2014:i:1:n:626359
Access Statistics for this article
More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().