EconPapers    
Economics at your fingertips  
 

Domain Identification for Inverse Problem via Conformal Mapping and Fixed Point Methods in Two Dimensions

Fagueye Ndiaye

Abstract and Applied Analysis, 2020, vol. 2020, issue 1

Abstract: In this paper, we present a survey of the inverse eigenvalue problem for a Laplacian equation based on available Cauchy data on a known part Γ0 and a homogeneous Dirichlet condition on an unknown part Γ0 of the boundary of a bounded domain, Ω ⊂ ℝN. We consider variations in the eigenvalues and propose a conformal mapping tool to reconstruct a part of the boundary curve of the two‐dimensional bounded domain based on the Cauchy data of a holomorphic function that maps the unit disk onto the unknown domain. The boundary values of this holomorphic function are obtained by solving a nonlocal differential Bessel equation. Then, the unknown boundary is obtained as the image of the boundary of the unit disk by solving an ill‐posed Cauchy problem for holomorphic functions via a regularized power expansion. The Cauchy data were restricted to a nonvanishing function and to the normal derivatives without zeros. We prove the existence and uniqueness of the holomorphic function being considered and use the fixed‐point method to numerically analyze the results of convergence. We’ll calculate the eigenvalues and compare the result with the shape obtained via minimization functional method, as developed in a previous study. Further, we’ll observe via simulations the shape of Γ and if it preserves its properties with varying the eigenvalues.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2020/1745656

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2020:y:2020:i:1:n:1745656

Access Statistics for this article

More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlaaa:v:2020:y:2020:i:1:n:1745656