EconPapers    
Economics at your fingertips  
 

A result on the bifurcation from the principal eigenvalue of the Ap‐Laplacian

P. Drábek, A. Elkhalil and A. Touzani

Abstract and Applied Analysis, 1997, vol. 2, issue 3-4, 185-195

Abstract: We study the following bifurcation problem in any bounded domain Ω in ℝN: {Apu:=−∑i,j=1N∂∂xi[(∑m,k=1Namk(x)∂u∂xm∂u∂xk)p−22aij(x)∂u∂xj]= λg(x)|u|p−2u+f(x,u,λ),u∈W01,p(Ω). . We prove that the principal eigenvalue λ1 of the eigenvalue problem {Apu=λg(x)|u|p−2u,u∈W01,p(Ω), is a bifurcation point of the problem mentioned above.

Date: 1997
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/S108533759700033X

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2:y:1997:i:3-4:p:185-195

Access Statistics for this article

More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlaaa:v:2:y:1997:i:3-4:p:185-195