EconPapers    
Economics at your fingertips  
 

Eigenvalue Asymptotics of the Even‐Dimensional Exterior Landau‐Neumann Hamiltonian

Mikael Persson

Advances in Mathematical Physics, 2009, vol. 2009, issue 1

Abstract: We study the Schrödinger operator with a constant magnetic field in the exterior of a compact domain in ℝ2d, d ≥ 1. The spectrum of this operator consists of clusters of eigenvalues around the Landau levels. We give asymptotic formulas for the rate of accumulation of eigenvalues in these clusters. When the compact is a Reinhardt domain we are able to show a more precise asymptotic formula.

Date: 2009
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2009/873704

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlamp:v:2009:y:2009:i:1:n:873704

Access Statistics for this article

More articles in Advances in Mathematical Physics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlamp:v:2009:y:2009:i:1:n:873704