EconPapers    
Economics at your fingertips  
 

Bifurcation Analysis of a Delayed Worm Propagation Model with Saturated Incidence

Zizhen Zhang, Yougang Wang and Luca Guerrini

Advances in Mathematical Physics, 2018, vol. 2018, issue 1

Abstract: This paper is concerned with a delayed SVEIR worm propagation model with saturated incidence. The main objective is to investigate the effect of the time delay on the model. Sufficient conditions for local stability of the positive equilibrium and existence of a Hopf bifurcation are obtained by choosing the time delay as the bifurcation parameter. Particularly, explicit formulas determining direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are derived by using the normal form theory and the center manifold theorem. Numerical simulations for a set of parameter values are carried out to illustrate the analytical results.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2018/7619074

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlamp:v:2018:y:2018:i:1:n:7619074

Access Statistics for this article

More articles in Advances in Mathematical Physics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlamp:v:2018:y:2018:i:1:n:7619074