Extraction of Human Motion Information from Digital Video Based on 3D Poisson Equation
Yilin Wang and
Baokuan Chang
Advances in Mathematical Physics, 2021, vol. 2021, issue 1
Abstract:
Based on the 3D Poisson equation, this paper extracts the features of the digital video human body action sequence. By solving the Poisson equation on the silhouette sequence, the time and space features, time and space structure features, shape features, and orientation features can be obtained. First, we use the silhouette structure features in three‐dimensional space‐time and the orientation features of the silhouette in three‐dimensional space‐time to represent the local features of the silhouette sequence and use the 3D Zernike moment feature to represent the overall features of the silhouette sequence. Secondly, we combine the Bayesian classifier and AdaBoost classifier to learn and classify the features of human action sequences, conduct experiments on the Weizmann video database, and conduct multiple experiments using the method of classifying samples and selecting partial combinations for training. Then, using the recognition algorithm of motion capture, after the above process, the three‐dimensional model is obtained and matched with the model in the three‐dimensional model database, the sequence with the smallest distance is calculated, and the corresponding skeleton is outputted as the results of action capture. During the experiment, the human motion tracking method based on the university matching kernel (EMK) image kernel descriptor was used; that is, the scale invariant operator was used to count the characteristics of multiple training images, and finally, the high‐dimensional feature space was mapped into the low‐dimensional to obtain the feature space approximating the Gaussian kernel. Based on the above analysis, the main user has prior knowledge of the network environment. The experimental results show that the method in this paper can effectively extract the characteristics of human body movements and has a good classification effect for bending, one‐foot jumping, vertical jumping, waving, and other movements. Due to the linear separability of the data in the kernel space, fast linear interpolation regression is performed on the features in the feature space, which significantly improves the robustness and accuracy of the estimation of the human motion pose in the image sequence.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2021/1268747
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlamp:v:2021:y:2021:i:1:n:1268747
Access Statistics for this article
More articles in Advances in Mathematical Physics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().