EconPapers    
Economics at your fingertips  
 

Solvability of initial boundary value problems for equations describing motions of linear viscoelastic fluids

N. A. Karazeeva

Journal of Applied Mathematics, 2005, vol. 2005, issue 1, 59-80

Abstract: The nonlinear parabolic equations describing motion of incompressible media are investigated. The rheological equations of most general type are considered. The deviator of the stress tensor is expressed as a nonlinear continuous positive definite operator applied to the rate of strain tensor. The global‐in‐time estimate of solution of initial boundary value problem is obtained. This estimate is valid for systems of equations of any non‐Newtonian fluid. Solvability of initial boundary value problems for such equations is proved under some additional hypothesis. The application of this theory makes it possible to prove the existence of global‐in‐time solutions of two‐dimensional initial boundary value problems for generalized linear viscoelastic liquids, that is, for liquids with linear integral rheological equation, and for third‐grade liquids.

Date: 2005
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/JAM.2005.59

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2005:y:2005:i:1:p:59-80

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2005:y:2005:i:1:p:59-80