EconPapers    
Economics at your fingertips  
 

The Generalized Order‐k Lucas Sequences in Finite Groups

Ömür Deveci and Erdal Karaduman

Journal of Applied Mathematics, 2012, vol. 2012, issue 1

Abstract: We study the generalized order‐k Lucas sequences modulo m. Also, we define the ith generalized order‐k Lucas orbit lAi,{α1,α2,…,αk-1}(G) with respect to the generating set A and the constants α1, α2, and αk−1 for a finite group G = 〈A〉. Then, we obtain the lengths of the periods of the ith generalized order‐k Lucas orbits of the binary polyhedral groups 〈n, 2, 2〉,〈2, n, 2〉,〈2, 2, n〉 and the polyhedral groups (n, 2, 2), (2, n, 2), (2, 2, n) for 1 ≤ i ≤ k.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2012/464580

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2012:y:2012:i:1:n:464580

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2012:y:2012:i:1:n:464580