Comparative Performance of Surrogate‐Assisted MOEAs for Geometrical Design of Pin‐Fin Heat Sinks
Siwadol Kanyakam and
Sujin Bureerat
Journal of Applied Mathematics, 2012, vol. 2012, issue 1
Abstract:
This paper presents the comparative performance of several surrogate‐assisted multiobjective evolutionary algorithms (MOEAs) for geometrical design of a pin‐fin heat sink (PFHS). The surrogate‐assisted MOEAs are achieved by integrating multiobjective population‐based incremental learning (PBIL) with a quadratic response surface model (QRS), a radial‐basis function (RBF) interpolation technique, and a Kriging (KRG) or Gaussian process model. The mixed integer/continuous multiobjective design problem of PFHS with the objective to minimise junction temperature and fan pumping power simultaneously is posed. The optimum results obtained from using the original multiobjective PBIL and the three versions of hybrid PBIL are compared. It is shown that the hybrid PBIL using KRG is the best performer. The hybrid PBILs require less number of function evaluations to surpass the original PBIL.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2012/534783
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2012:y:2012:i:1:n:534783
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().